
CGWorld – from Conceptual Graph Theory to the
Implementation

Pavlin Dobrev1, Albena Strupchanska2 and Kristina Toutanova3

1ProSyst Bulgaria Ltd., Sofia, Bulgaria
pavlin@prosyst.com

2Linguistic Modeling Lab, CLPP, Bulgarian Academy of Sciences, Sofia, Bulgaria
albena@lml.bas.bg

3Stanford University, Department of Computer Science, Stanford, CA, USA
kristina@cs.stanford.edu

Abstract. This article summarizes the authors’ experience in implementing
CGWorld - a web-based workbench for distributed development of a
knowledge base of conceptual graphs, stored on a central server. The
conceptual graph theory is discussed and the implementation of it in
CGWorld is presented.

1 Introduction

CGWorld was first introduced at ICCS 2000 [5]. Future development was presented
at ICCS 2001 [3, 4] and will be presented in ICCS 2002 [1]. All these papers argue
about the architecture and the software design of the application.

CGWorld was used to develop a Knowledge Base (KB) from the financial domain
[14]. This KB is an excerpt from the KB of the LARFLAST (LeARning Foreign
LAnguage Scientific Terminology1) Project. Conceptual Graphs (CGs) are used as a
knowledge representation core in the complex language-learning environment defined
in LARFLAST [6]. In [14] you can find the type hierarchy and Display, CGIF and
CGPro forms of the CGs in this KB.

The main goal of this paper is to discuss some of the features of CGWorld that are
specific to Conceptual Graph and to show how they are linked to the Conceptual
Graph Standard [7].

2 Conceptual Graphs - Representation and Features in CGWorld

As defined in [7] a conceptual graph (CG or graph) is an abstract representation of
logic with nodes called concepts and conceptual relations, linked together by arcs.

1 INCO Copernicus'98 Joint Research Project #977074

mailto:p_dobrev@prosyst.com
mailto:kristina@cs.stanford.edu
mailto:kristina@cs.stanford.edu

They express meaning in the form that is logically precise, humanly readable, and
computationally tractable. All these features make them a natural choice for many
applications [8,9,10,11,12,13,16] that use them as a knowledge representation format.
In CGWorld conceptual graph is any collection of concepts and relations linked by
their appropriate arrows or co-referent links.

The graphical CG Editor has been implemented as a Java applet and provides easy to
use Drag & Drop interface for definition and manipulation of a conceptual graphs
knowledge base. After it is started, the Editor can load and save conceptual objects
from the server from which it has been loaded.

Fig. 1. CGWolrd main interface

Fig. 1 gives an example of a visual interface of CGWorld. It shows the main browser
window of CGWorld and two graphs opened for editing. The first graph represents
the sentence “Primary market operates with newly issued stocks and provides new
investments.”. The second one represents “A bond in converted into common stock.”.
Both graphs are from the financial KB in [14].

The following paragraphs give a description of the main features in CGWorld that the
authors consider useful for CGs application.

Portable across all platforms. The visual interface of the system is a set of HTML
pages and applets. It has been developed and has been tested with the most popular
browsers - Netscape Navigator and Internet Explorer. The server part of CGWorld is
a set of enterprise components that follow the J2EE standard. The portability of Java
language “write once, run everywhere” transfers to the application. It can be used on
different hardware platforms and operating systems.

Database persistence. Using a relational database as a persistent storage allows large
number of CGs to be handled by the system.

FK_ARC_REFE_CG

FK_CGC_REFE_CG

FK_ARC_REFE_RELA

FK_REGI_REFE_TYPE

FK_ROOT _REFE_TYPE

FK_HIER_REFE_HIER

FK_FS_REFE_CG

FK_CGC_REFE_REGI

FK_HIER_REFE_ROOT

FK_RELA_REFE_REGI

cg
CG_ID
CGIF
CGPRO
comment

int(11)
char(255)
char(255)
char(255)

<pk>

fs
ID
CG_ID
name
value

INT(11)
int(11)
char(20)
char(255)

<pk>
<fk>

relation
CGR_ID
name
comment

int(11)
char(20)
char(255)

<pk,fk>

arc
ARC_ID
CG_ID
CGR_ID
FROM_ID
TO_ID
KEY

int(11)
int(11)
int(11)
int(11)
int(11)
TO_ID (TO_ID

<pk>
<fk1>
<fk2>

registry
ID
TYPE_ID
KEY

int(11)
int(11)
TYPE(TYPE_ID)

<pk>
<fk>

type
TYPE_ID
name

int(11)
char(20)

<pk>

CGC
ID
CG_ID
name
comment
key

int(11)
int(11)
char(20)
char(255)
TYPE_ID(TYPE_ID)

<fk2>
<fk1>

hierarchy
ID
PARENT_ID
HIERARCHY_ID

int(11)
int(11)
int(11)

<pk,fk2>
<fk1>

roots
ID
ROOT_ID
TYPE_ID
HIERARCHY_ID

int(11)
int(11)
int(11)
int(11)

<pk>

<fk>

Fig. 2. Data model

Standard way to access the data. A set of Entity Enterprise JavaBeans represents
persistent objects that are used to store concepts, relations, contexts, referents, arcs
and information about the KB. This allows the maintenance of large amounts of data.

The control of the data integrity is performed by the built-in mechanisms for
transaction maintenance.

Distributing of application. The use of Enterprise Java Beans enables the
manipulation of larger amounts of data and increased numbers of concurrent users.
The stated above features allows distributed acquisition and editing of CGs
knowledge bases. Applications developed on top of J2EE can be distributed on
several computers because most J2EE compliant application servers provide this
feature.

Any number of graph windows may be opened for editing. An example of this is
given at Fig. 1. In this way the user has the opportunity either to compare different
CGs or to visualize them easily.

Fig. 3. Conceptual Graph Editor Overview

Drag & Drop interface. Concepts, relations, arcs, co-referent links and contexts are
supported for editing via a simple Drag & Drop interface. Fig. 3 shows the select
mode of the editor. This is a mode for editing the position and the names of the
conceptual objects. After selecting an object and pressing the mouse once, the object
is highlighted. As long as the mouse button is down, the object remains selected and it
can be moved along the working pane. The object’s movement follows the mouse’s
movement. After the mouse button is released, the new object’s position is
remembered and the new positions of the incoming and outgoing arcs are
automatically recomputed. Double clicking invokes an edit filed in which the object’s
name can be edited. Pressing the 'Enter' button causes acceptance of the changes made

so far. If an object’s name is erased and then this change is confirmed (with ‘Enter’),
then object is deleted from the working pane.

Ability to customize the color, the position and the size of conceptual objects. Fig.
3 and Fig. 4 show that every conceptual object can be chosen directly by the mouse
and also its color, position and size can be changed.

Ability to assign any number of additional properties to the conceptual objects.
These properties are related mainly to conceptual objects that represent concepts in
CGs. Some possible properties are number, individual name or marker, comment etc.
There is no limitation about which properties could be assigned to the conceptual
object. Some of the properties have a special meaning and change the text that is
displayed on the concept. Currently CGWorld interpret the following properties:
• Number. The name of the property is num. When the value is ‘pl’ (from plural)

the text that is displayed is “name : {*}”.
• Designator. The name of the property is type. When the value is ‘def’ the text

that is displayed is “name : #” and it represents the definite concept . When the
value is ‘quest’ it means that the concept is a subject of quest in some query.

• Individual marker or name. The name of the property is refID. The text that is
displayed is “name : value”.

• Quantifier. The name of the property is quant. When the value is ‘every’ the text
that is displayed is “name : every”. When the value is ‘lambda’ the text tat is
displayed is “name : lambda” showing that the concept is the genus concept in
some conceptual graph representing type definition

Fig. 4. Drag and drop interface.

Zooming capability. When the zoom is changed new positions of the objects are
visualized (all dimensions are recomputed). This feature is very useful for editing
large conceptual objects. In Fig 1 the first graph is displayed with the scale 7 and the
second one is displayed with the scale 11.

Storing and retrieving of conceptual graphs to/from the application server.
Graphs could be either created by editing or acquired automatically by CGExtract [4].
In both cases a natural language representation of a graph is kept as a comment. Also
some graphs could be received as a result of a conceptual graph operation, the
comment in this case is the identifiers of graphs and the applied operation on them.

3 Reasoning with Conceptual Graphs

As a formal knowledge representation model CGs are provided with reasoning
operations, which are sound and complete with respect to deduction in first order
logics. All operations are based on canonical formation rules described in [7].

Operations on GCs have been integrated in CGWorld and have been used for
generation and acquisition of conceptual graphs using KB in the financial domain.
Supported operations are join, projection, specialization, generalization, type
contraction and type expansion and they are realized for all kinds of graphs without
cycles and actors. A detailed description of each operation including important
aspects of its implementation and its user interface is given in [3]. In this paper we
will present some extensions of the operations and ague about their usefulness in
practical systems. All these operations have been realized in Prolog by now.

3.1 Extensions of the operations

All implemented operations have been used by now mainly from GC users to get the
idea of their essence and their usage. Given two CGs identificators one can perform
whichever operations he/she wants. It presumes that the user will browse the KB in
order to choose graphs for an operation. So the more experienced and the more
acquainted with the definition of operations the user is, the better and faster results
he/she will receive. Browsing the KB for suitable graphs is not very useful for non-
experienced users as they may receive a lot of results as “Impossible to perform the
operation” before they see some result as CG/CGs in both graphical and CGPro
representations. To facilitate the user interactions with the system the projection and
the join operations have been extended during the last year such that a given CG is
projected respectively joined to the whole KB and the result is retrieved to the user.
Another benefit from this extension is that the system becomes more flexible in
retrieving information from the KB as given a CG (fact) one can retrieve other
relevant CGs (facts) from this KB.

Using projection operation (fig. 5) one can extract true facts from the KB either as a
part of CGs or whole CGs. Also the projection operation can be used for processing
queries to the KB. We have developed a system [2] that process queries in controlled
English with negation to the KB using projection operation and we plan to integrate
this system in CGWorld in the future. Both simple and extended projection operations
have been realized.

Fig 5. Extended projection operation of a graph to the knowledge base

The join operation is the only operation used by now for generating knowledge
(extending assertions in KB) from the existent KB. In most of the cases the new
assertions are not necessary true assertions but this is a convenient way for
automatically enlarging the KB. Performing join of a CG to the KB is actually
maximal join since it joins graphs on maximal common overlap. In this operation we
take into account almost all kinds of referents well as correference links. Processing
graphs with correference links gives some delay in the execution time as we check for
compatibility the correferent concepts.

In both operations a user choose an identifier of either existent graph or a new graph
created in CG Editor and receives the answer as one or more CGs from the KB.

The generalization operation is also very useful to be implemented in this way since it
preserves truth so we can use it to automatically generate true assertions about
specific domain. The only disadvantage of this operation is that it does not preserve
selection constraints about types and individuals. So in future we will implement
generalization of a CG to the KB too.

4 Further work

Currently CGWorld is implemented as a Java Application. It is not straightforward to
integrate it in applications written in a language other than Java. Supporting different
formats for knowledge representation allows importing and exporting of data to other
applications. Using XML [15] as a format for knowledge representation allows data to
be exchanged between different applications. The next step that we intend to
undertake is extension of GGWorld components to WEB services. WEB services, as
the name implies, are services offered via the Web. In a typical Web services

scenario, a business application sends a request to a service at a given URL using the
SOAP protocol over HTTP. The service receives the request, processes it, and returns
a response. The idea is to offer a set of services for processing conceptual data and
exporting it in different formats. This will allow integration with applications written
in languages other than Java. For example languages supported by the Microsoft .Net
platform such as C#, C, J#, Visual Basic etc.

There are also some legacy parts implemented in Prolog, especially conceptual graph
operations. We start to implement some of the operations in MySQL with respect to
J2EE architecture and we plan to implement all of them soon.

5 Acknowledgements

We would like to thank all researchers involved in the LARFLAST (LeARning
Foreign LAnguage Scientific Terminology2) project and especially Galia Angelova,
Svetla Boytcheva, Ani Nenkova and Toma Nikolov that helped us with the
programming and knowledge base development.

6 References

1. P. Dobrev and K. Toutanova. CGWorld – Architecture and Features,
Proceedings of ICCS'2002, 10th International Conference on Conceptual
Structures, Borovets, Bulgaria.

2. S. Boytcheva, A. Strupchanska and G. Angelova. Processing Negation in
NL Interfaces to Knowledge Bases, Proceedings of ICCS'2002, 10th
International Conference on Conceptual Structures, Borovets, Bulgaria.

3. P. Dobrev, A. Strupchanska and K. Toutanova. CGWorld-2001 - New
Features and New Directions, CGTools Workshop at ICCS 2001

4. S. Boytcheva, P. Dobrev and G. Angelova. CGExtract: Towards
Extraction of Conceptual Graphs from Controlled English. In: G. W.
Mineau (Ed.), Conceptual Structures: Extracting and Representing
Semantics, Contributions to ICCS 2001, pp. 89-101.

5. P. Dobrev and K. Toutanova. CGWorld - A Web Based Workbench for
Conceptual Graphs Management and Applications. In: G. Stumme (Ed.),
Working with Conceptual Structures, Contributions to ICCS 2000,
Shaker Verlag, Germany, pp. 243-256.

6. G. Angelova, A. Nenkova, S. Boycheva and T. Nikolov. Conceptual
Graph as a Knowledge Representation Core in a Complex Language
Learning Environment. In: G. Stumme (Ed.), Working with Conceptual
Structures, Contributions to ICCS 2000, Shaker Verlag, Germany, pp.
45-58.

2 INCO Copernicus'98 Joint Research Project #977074

7. Conceptual Graph Standard Information Technology (IT) - Conceptual
Graphs draft proposed American National Standard (dpANS)
NCITS.T2/98-003 (http://www.bestweb.net/~sowa/cg/cgdpansw.htm).

8. G. Angelova, K. Toutanova and S. Damianova. Knowledge Base of
Conceptual Graphs in DBR-MAT. University of Hamburg, Computer
Science Faculty, Project DBR-MAT (funded by the Volkswagen
Foundation). Technical Report BG-3-98, July 1998.

9. G. Angelova, S. Damianova, K. Toutanova, K. Bontcheva: Menu-Based
Interfaces to Conceptual Graphs: The CGLex Approach. In Proc. ICCS
1997, LNAI 1257, Springer, 1997, pp. 603-606.

10. G. Angelova, K. Bontcheva: DB-MAT: Knowledge Acquisition,
Processing and NL Generation Using Conceptual Graphs. In Proc. ICCS
1996, LNAI 1115, Springer 1996, pp. 115-129.

11. S. Pollitt, A. Burrow, P. Eklund. WebKB-GE - A Visual Editor for
Canonical Conceptual Graphs. ICCS 1998: pp. 111-118

12. H. Delugah, CharGer – A Conceptual Graph Editor written by Harry
Delugah (http://www.cs.uah.edu/~delugach/CharGer/).

13. H. Delugah, CharGer: Some Lessons Learned and New Directions.
Working with Conceptual Structures, Contributions to ICCS 2000: pp.
306-309.

14. A. Strupchanska, P. Dobrev, S. Boytcheva, T. Nikolov, K. Toutanova,
Sample Knowledge Base in Finance,Contribution to CGTools Workshop
at ICCS 2001 (http://www.ksl.stanford.edu/iccs2001/CGTools/)

15. M. Altheim, XML Conceptual Graphs (XCG) 1.0, Sun Microsystems
Technical Report 23 August 2001.

16. Ph. Martin, P. Eklund. Large-scale cooperatively-built heterogeneous
KBs. Proceedings of ICCS'2001, 9th International Conference on
Conceptual Structures (Springer Verlag, LNAI 2120, pp. 231-244),
Stanford University, California, US.

http://www.bestweb.net/~sowa/cg/cgdpansw.htm
http://www.cs.uah.edu/~delugach/CharGer/

