
-1-

Ontology Middleware: Platform for Real-World
Knowledge Management

Atanas Kiryakov1, Damyan Ognyanov1, Kiril Simov2,1, Borislav Popov1, Stanislav
Jordanov1

1 OntoText Lab, Sirma AI EOOD, 38A Chr. Botev blvd, 1000 Sofia, Bulgaria
{naso, damyan, borislav, stenly}@sirma.bg

2 Linguistic Modelling Lab, CICT, Bulgarian Academy of Sciences, 25 Acad. G. Bontchev
str, 1113 Sofia, Bulgaria

kivs@bgcict.acad.bg

Abstract. An ontology middleware system is defined, presented, and discussed
in this paper. It includes number of features critical for the implementation of
real-world knowledge management application: versioning, fine-grained access
control, and meta-information. Important part of the research presented is the
definition of proper models for support for each of these aspects. A security
model with three levels of complexity is designed so to support proper
management of the compromise between complexity and efficiency. The
system presented is under development as a part of the On-To-Knowledge
project where it is implemented as extension of the Sesame repository and
allows management of knowledge represented in RDF(S)-based languages,
including DAML+OIL. Although the implementation makes strong
commitments to RDF(S), the definitions of the change tracking and security
problems are of general KR importance. This paper is further development of
the results reported in [11].

1. Introduction

The ontology middleware presented here can be described as an „administrative“
software infrastructure that makes the rest of the modules in a knowledge
management toolset easier for integration in real-world applications. The central issue
is to make the methodology and modules available to the society in a shape that
allows easier development, management, maintenance, and use of middle-size and
large knowledge bases. The following features are considered:

• Versioning (tracking changes) of knowledge bases;
• Access control (security) system;
• Meta-information for knowledge bases.

These three aspects are interrelated as depicted on the following scheme.



2

 
 

Knowledge 

Control System 

Meta-
Information

Access
Control

Tracking
Changes

Sto
re

as
Trac

k by

Filtered and

preserved by

Current User Info.

Change Investigation

The composition of the three functions above represents a Knowledge Control System
(KCS) that provides the knowledge engineers with the same level of control and
manageability of the knowledge in the process of its development and maintenance as
the source control systems (such as CVS) provide for the software. However, KCS is
not only limited to support the knowledge engineers or developers – from the
perspective of the end-user applications, KCS can be seen as equivalent to the
database security, change tracking (often called cataloguing) and auditing systems. A
KCS should be carefully designed so to support these two distinct use cases.

An ontology middleware system should serve as a flexible and extendable platform
for knowledge management solutions. It has to provide infrastructure with the
following features:

• A repository providing the basic storage services in a scalable and reliable
fashion. An example of such a system is the Sesame RDF(S) repository, [4];

• Multi-protocol client access to allow different users and applications to use
the system via the most efficient “transportation” media;

• Knowledge control – the KCS introduced above;
• Support for plugable reasoning modules suitable for various domains and

applications. This ensures that one and the same system may be used within
single enterprise or computing environment for various purposes (that
require different reasoning services.)

The work presented here was carried as part of the On-To-Knowledge project. The
design and implementation of the ontology middleware module is an extension of the
Sesame architecture (see [4]) that already covers many of the desired features. Earlier
stage of the research is presented in bigger details in [11]. The later report also
presents a DAML+OIL reasoner, called BOR, developed as a plugable module for
Sesame/OMM.

The ontology middleware module presented extends the Sesame RDF(S)
repository that affects the management of both ontologies and instance data in a pretty



-3-

much unified fashion. Here the term repository will also be used to denote a compact
body of knowledge that could be used, manipulated, and referred as a whole.

Section 2 is dedicated to tracking changes in RDF(S) repositories – definition of
the task, related work, principles, design and implementation approach. In a similar
fashion section 3 targets the security issue. Future work and conclusion follow in the
last section.

2. Tracking Changes, Versioning, and Meta-Information

In this section, we address the problem for tracking changes within a knowledge base.
Higher-level evaluation or classification of the updates (considering, for instance,
different sorts of compatibility between two states or between ontology and old
instance data) is beyond our scope – those are studied in depth in [5]. The tracking of
the changes in the knowledge (as discussed here) only provides the necessary basis
for further analysis. In summary, the approach taken can be shortly characterized as
”versioning of RDF on a structural level in the spirit of the software source control
systems”.

2.1. Related Work

Here we will shortly comment several studies related to versioning of a complex data
objects. Although some of the sources discuss similar problems there is not one
addressing ontology evolution and version management in a fashion allowing
granularity down to the level of statements (or similar constructs) and capturing of the
interactive changes in knowledge repositories such as assertions and retractions.

Database schema evolution and the tasks related to keeping schema and data
consistent to each other can be recognized as a very similar problem. A detailed and
pretty formal study on this problem can be found in [7, 8] – it presents an approach
allowing the different sorts of modifications of the schema to be expressed within
suitable description logic. Another study dealing with the design of a framework
handling database schema versioning is presented in [1] – it presents a different
approach of handling the changes of the evolving objects and classes.

Probably the most relevant work was done under the On-To-Knowledge project –
among the reports concerning various aspects of the knowledge management, most
relevant is [5], mentioned earlier in this section.

2.2. Versioning Model for RDF(S) Repositories

A model for tracking of changes, versioning, and meta-information for RDF(S)
repositories is proposed. The most important principles are presented in the next
paragraphs.

VPR1: The RDF statement is the smallest directly manageable piece of knowledge.



4

Each repository, is a set of RDF statements (triples) – the smallest separately
manageable pieces of knowledge. Arguments exist that the resources and the literals
are the smallest entities – it is true, however they cannot be manipulated
independently, only as part of a statement. So, the resources and the literals from a
representational and structural point of view are dependent from the statements.

VPR2: An RDF statement cannot be changed – it can only be added and removed.
Since statements are nothing more than triples, changing one of the constituents, just
creates another triple by removing the intitial one and adding the resulting one.

VPR3: The two basic types of updates are addition and removal of a statement
Those are the events that have to be tracked by a tracking system. Event types such as
replacement or simultaneous addition of statements can all be seen as composite
events that can be modeled via sequences of additions and removals.

VPR4: Each update turns the repository into a new state
A state of the repository is determined by the set of explicitly asserted statements. As
far as each update is changing the set of statements, it is also turning the repository
into another state. A tracking system should be able to address and manage all the
states of a repository.

2.2.1. History, Passing through Equivalent States
The history of changes in the repository could be defined as sequence of states, as
well, as a sequence of updates, because there is always an update that turned
repository from one state to the next one. Obviously, in the history, there could be a
number of equivalent states. It is just a question of perspective do we consider those
as one and the same state or as equivalent ones. We assumed that there could be
equivalent states in the history of a repository, but they are still managed as distinct
entities (see [11] for motivation.)

2.2.2. Versions are labeled states of the repository
Some of the states of the repository could be pointed out as versions. Such could be
any state, without any formal criteria and requirements. Once defined to be a version,
the state becomes a first class entity for which additional knowledge could be
supported as a meta-information.

2.3. Meta-Information

Meta-information here is discussed as a kind of information that does not change the
semantics of the “real” knowledge. Such could be information about the status of
development, comments and documentation, maintenance hints, etc. The information
related to tracking of changes is also a meta-information. In the context of the
ontology middleware presented here, meta-information is supported for resources,
statements, and versions. As far as DAML+OIL ontologies are also formally encoded
as resources (of type daml:Ontology) meta-information can be attached to them as



-5-

well. More detailed discussion about the support of meta-information can be found in
[11], in this sub-section we are just mentioning the central issues:

• The meta-information can be seen as RDF(S) itself. This means that it can be
queried and extracted in arbitrary combination with the “real” information. It
is however the case that internally, some of the meta-information is stored in
a different way for performance and security reasons. Thus the system
supports a kind of mimicry to make it available as RDF(S);

• All the KCS related information would be represented in RDF according to
http://www.ontotext.com/otk/2002/03/kcs.rdfs. That includes tracking,
versioning, and security information as well as user-defined meta-
information. The meta-information is encoded via kind of special, easily
distinguishable properties – namely such defined as sub-properties of a
kcs:metaInfo. Also, all the related classes are defined as sub-classes of
kcs:KCSClass. This approach allows for easy filtering and separation of
the meta-information, although it can easily be used together with the “real”
one;

• Changes in the meta-information are considered as changes of the state of
the repository and hence they are tracked. The only exception is the tracking
meta-information itself1;

• There is a special reification-like mechanism developed to support user-
defined meta-information about statements. As far as reification is not
formally used there are no problematic requirements for the repository. The
mechanism is tested to work smoothly with Sesame, details could be found
in [11]2.

2.4. Implementation Approach

The schema for tracking changes in a repository is described first. For each
repository, there is an update counter (UC) – an integer variable that increases its
value each time the repository is updated. In the basic case, that means when a
statement gets added or deleted. Let us call each separate value of the UC update
identifier, UID. The UIDs of thew adding and removal are known for each statement
– these values determine the “lifetime” of the statement. It is also the case that each
state of the repository is identified by the corresponding UID.

The UIDs that determine the “lifetime” of each statement are kept, so, for each
state it is straightforward to find the set of statements that determine it – those that
were “alive” at the UID of the state being examined. As far as versions are nothing
more than labeled states, for each one there will be also unique UID.

The approach could be demonstrated with the sample repository KB1 and its
“history”. The repository is represented as a graph, the lifetime of the statements is
given after the property names. The history is presented as a sequence of events in
format :

1 This allows paradoxes like the one with the Russell’s barber to be avoided.
2 A full working example can be found at

http://www.ontotext.com/otk/statement_metainfo_ex.rdf



6

UID:nn {add|remove} <subj, pred, obj>

History:
UID:1 add <A, r1, B>
UID:2 add <E, r1, D>
UID:3 add <E, r3, B>
UID:4 add <D, r3, A>
UID:5 add <C, r2, D>
UID:6 add <A, r2, E>
UID:7 add <C, r2, E>
UID:8 remove <A, r2, E>
UID:9 add <B, r2, C>
UID:10 remove <E, r3, B>
UID:11 remove <B, r2, C>
UID:12 remove <C, r2, E>
UID:13 remove <C, r2, D>
UID:14 remove <E, r1, D>
UID:15 remove <A, r1, B>
UID:16 remove <D, r3, A>

Here follow two “snapshots” of states of the repository respectively for UIDs 2 and 8.

It is an interesting question how to handle in the above model, multiple additions and
removals of one and the same statement, which in a sense periodically appears and
disappears form the repository. We undertake the approach to consider them as
separate statements, because of reasons similar to those presented for the support of
distinguishable equivalent states.

2.4.1. Batch Updates
We call batch update the possibility for the update counter of the repository to be
stopped, so not to increment its value for a number of consecutive updates. This
feature can be very important for cases when it does not make sense the individual

A B
r1:1-15

r2:6-8

C
r2:5-13

r3:4-16

D

r1:2-14

E

r3:3-10

r2:7-12
r2:9-11

Repository KB1

A B
r1

Cr2

r3

D

r1

E

r3

r2

KB1, State UID:8

A B
r1

D

r1

E

KB1, State UID:2



-7-

updates to be tracked one by one. Such example could be assertion of a DAML+OIL
element that is represented via set of RDF statements none of which can be
interpreted separately. Another reasonable example for a batch update is an
application that works with the repository in a transactional fashion – series of
updates are bundled together, because according to the logic of the application.

2.4.2. Versioning and Meta-information for Imported Statements
New statements can appear in the repository when an external ontology is imported in
the repository either by xmlns:prefix=”uri” attribute of an XML tag in the
serialized form of the ontology either by daml:imports statement found in the
header of a DAML+OIL ontology. In each of those cases the imported statements are
treated as read-only. All these statements are added and removed to/from the
repository simultaneously with the statement that causes their inference or import.

2.4.3. Versioning and Meta-information for Inferred Statements
There are cases when addition of a single statement in the repository leads to the
appearance of several more statements in it. For example, the addition of the
statement ST1=<B, rdfs:subClassOf, C> leads to the addition of two new
statements ST2=<B, rdf:type, rdfs:Class> and ST3=<C, rdf:type,

rdfs:Class>. This is a kind of simple inference necessary to “uncover” knowledge
that is implicit but important for the consistency of the repository. There are number
of such inferences implemented in Sesame.

The question about the lifetime of such inferred statements is far not trivial.
Obviously, they get born when inferred. In the simplest case, they should die (get
removed) together with the statement that caused them to be inferred. However,
imagine that after the addition of ST1 in the repository, there was another statement
added, namely ST4=<B, rdfs:subClassOf, D>. As far, as ST2 is already in the
repository only ST5=<D, rdf:type, rdfs:Class> will be inferred and added.
Now, imagine ST1 is deleted next while ST4 remains untouched. Should we delete
ST2? It was added together with ST1 on one hand, but on the other it also follows
from ST4. Resolving such problems requires the so-called “truth maintenance
systems” (TMS) – basically, for each statement (and most important, for the inferred
ones) information is being kept about the statements that “support” it, i.e. such that
(directly) lead to its inference. A TMS is currently in development for Sesame – its
design is an interesting research problem related to the model-theoretic semantics of
RDF(S). An important characteristic of RDF(S) is that the each time when a statement
is inferred it is possible to determine a group of up to tree statements that caused the
inference, i.e. jointly support the inferred statement. The TMS it is not presented here
dew to space limitations.

Assuming, there is a TMS working, the tracking of the inferred statements is
relatively easy. When the TMS “decides” that an inferred statement is not supported
anymore, it will be deleted – this is the natural end of its lifetime. It will be considered
as deleted during the last update in the repository, which automatically becomes a sort
of batch update (if it is not already.) As with the imported statements, meta-
information may not be attached to inferred statements.



8

The security restrictions towards inferred statements can be summarized as
follows:

• Inferred statements may not be directly removed;
• A user can read an inferred statement iff s/he can read one of the group of

statements that support it.
• The rights for adding statements are irrelevant – a user may or may not be

allowed to add a statement independently from the fact is it already inferred
or not.

2.4.4. Versioning of Knowledge Represented in Files
Here we only consider the import of knowledge into the Sesame from files. The first
step is to convert the file F into a set of statements FS, which also includes the
inferred ones. Next, the appropriate changes are made in the repository within a single
batch update. Three different modes for populating repository are supported:

• Re-initializing – the existing content of the repository is cleared and the set
of statement FS is added. No kind of tracking or meta-information is
preserved for the statements that were in the repository before the update.
This is equivalent to Clear followed by Accumulative import;

• Accumulative – FS is added to the repository, it means that the statements
from FS that are already in the repository are ignored (any tracking and
meta-information for them remains unchanged) and the rest of the statements
are added. This type of import may lead to inconsistency of the repository
even if both the previous state and the file was consistent;

• Updating – after the import the repository contains only the statements form
the file, the set FS (as in the re-initializing mode). The difference is that the
statements from the repository that were not in FS are deleted but not
cleared, i.e. after the update, they are still kept together with the
corresponding tracking and meta-information. The statements from FS that

were not already in the repository3 are added.
The Updating import mode is the most comprehensive one and allows the repository
to be used to track changes in a file that is being edited externally and “checked-in”
periodically. This can also be used for outlining differences between versions or
different ontologies represented in files.

2.4.5. Branching Repositories
Branching of state of repository is possible – technically a new repository is created
and populated with a certain state of the existing one, we want to make branch of.
When a state is getting branched, it is automatically labeled as a version first. The
appropriate meta-information that indicates that this version was being used to create
a separate branch of the repository into a new one will be stored.

3 Actually those that are not “alive”.



-9-

3. Security and Access Control

Here we define a model for access control over RDF(S) repositories that allows
development of a system handling ontologies, instance data, and knowledge bases of
various types in the most unrestrictive way. The requirements for such security
system are discussed in detail in [11] together with proper argumentation about the
importance of the support of fine-grained security rules for encoding of business
logic. The formal representation of the security data together with the implementation
approach is discussed in the last sub-section.

3.1. Related Work

There is almost no related work considering directly access control systems for
knowledge bases, ontology management systems, or repositories. In [6] the Ontology
Builder and Ontology Server products are presented, with short discussion on the
security system included – the access rights there are defined as roles assigned to the
users, where each role provides permissions for certain operations. The so-called fine-
grained permissions of the Ontology Server allow single user to have different roles
with respect to different ontologies – which is the equivalent of the repository level
security in our context.

Database security seems to be the area most closely related with the knowledge
base security. The standard security schemata there provide control of the access
down to the level of a database instance and distinct tables. In contrast, our security
system to provides means for controlling the access with much better granularity,
namely at the level of instances or records. An interesting exception presenting access
control down to record level is the Oracle Label Security presented in [13]. A general
discipline called Role-based Security covers wide range of theoretical issues related to
the design of various access control systems – our research is follows the lines of [9].

3.2. Basic Principles of the Security Model

The basic principles underlying a security model for RDF(S) are presented here.
Those in a high degree determine also the implementation approach and the
representation of the security information discussed in the next sub-sections.

SPR1: Access rights can be defined within an RDF repository.

There may not be rules that simultaneously determine the rights for access to
statements in multiple repositories. Of course a security schema created once for one
repository can be copied (i.e. branched,) so, to be used as a basis for the access
control in another one.

SPR2: Access to a repository is allowed only for registered users.



10

At least ID and Password are kept for each registered user. One and the same user can
have access rights with respect to multiple repositories. However, the user’s rights
toward different repositories are relevant only for the repository they are defined for.

SPR3: The following restriction types to be supported, according to the data they
describe and the way they are defined:
• Repository - the whole repository. Certain rights are applicable only for this

restriction type (such as Admin and History). No need of definition as far as
it is always used in the context of a repository;

• Schema – all the resources and statements that constitute the schema of the
repository. No need of definition;

• Classes – all the resources (instances) of specific classes, including the
statements where those are subjects. Disjunction logic applicable in case of
multiple classes. Resources that are instances of sub-classes also considered.
Defined via set of classes;

• Instances – set of specific resources, including the statements where those
are subjects. Defined via set of resources;

• Properties – all the statements with specific properties as predicates.
Disjunction logic applicable in case of multiple properties specified. The
sub-properties are also considered. Defined via set of properties;

• Pattern – all the statements that conform to patterns defined via restrictions
of type Classes or Instances over the subject and/or object and restriction of
type Properties over the predicate;

• Query – the set of statements to be returned by RQL query that could take
the current user as a parameter. Defined via query;

The so-called Security Classes provide additional power hooked to restriction type
Classes – they are discussed in sub-section 3.2.1. . Discussion on the different
restriction types can be found in sub-section 3.2.3. .

SPR4: The following Rights are supported: Read, Add, Remove, Admin, Clear,
and History;

Each right corresponds to a type of operation (or action) that is allowed or disallowed
for a user with respect to some resources and statements. The case with the Add rights
is more special because (in contrast to Read and Remove rights) it targets resources
and statements, which are still not in the repository4 – this requires special handling in
cases of Query restrictions or Security Classes involved.

Locking is not specified as a separate right because it can be considered as a
consequence of the right for modification. There are also no separately defined rights
for import and export – those are consequence of the Add and Read rights.

The History right allows management of the tracking information; this includes
labeling versions and the kind of modifications discussed in sub-section 2.2.1.
Admin and History rights are supported just on the repository level.

4 Thanks to Michel Klein, who raised this issue within a discussion.



-11-

SPR5: Rights are always granted via Security Rules that have the following
constituents: Restriction and Set of rights.

Each security rule grants certain rights (out of those specified in SPR4) to the
resources and statements determined by a single restriction, formed according to
SPR3.

SPR6: Roles are supported. Each role is defined as a set of Security Rules and
other roles.

The roles represent an abstraction that allows set of logically related security rules to
be grouped together. If role R1 is included in the definition of role R2, than the later
(R2) indirectly contains also the security rules of the former (R1). This way, the roles
may form a hierarchy with multiple-inheritance and unrestricted depth. Cyclic
dependencies between roles are not allowed.

SPR7: Roles as well as individual Security Rules can be assigned to Users.

A number of roles and individual rules can be assigned to registered users. Assigning
a role is equivalent to assigning all the security rules and other roles that form its
definition.

SPR8: The users have only the rights explicitly assigned to them, i.e. a permissive
security policy is enforced.

Apart from the exception defined with SPR9, the users are only allowed to perform
actions for which a formal permission is assigned to them. A user is allowed to
perform certain action over certain data iff there is at least one rule out of those
(directly or via roles) assigned to him to grant this permission.

SPR9: Each user can Read and Remove statements added by him.

An exception to the permissive security policy is that the users can always see and
remove statements they added (so, in a sense they “own”.)

SPR10: Statements defining security rules, roles, and assignments are subject to
Read, Add, and Remove rights of users that have Admin right for the repository.

The above principle defines the administration policy (see [9]) in the terms of the
security model introduced here.



12

3.2.1. Security Classes
Security classes are defined via RQL queries. Those allow specification of sets of
resources5 that correspond to complex criteria more expressive than Patterns.

The deviation of the security class notion from the class notion in RDF(S) follow:
• They are defined as regular classes, i.e. of type rdfs:Class;
• There is a defining RQL query associated with each security class;
• Each resource is considered an instance of a security class if it is member of
the result of its defining query.

3.2.2. Query Restrictions
The Query restrictions can bear unrestricted complexity including context-related
logic that depends on the user making the request.

Such restrictions are expressed via RQL queries that:
• Return RDF triples, subset of all the statements in the repository;
• Can involve _USER_ parameter, to be replaced run-time with the user

performing the request.
As discussed above, the security rule defined via Query restrictions hold on the
statements returned from the evaluation of the query.

3.2.3. Three Layers of Complexity and Support
The restrictions to be used in the security system presented above can be separated
into three levels of complexity:

• Standard. Restrictions that allow easy and fast implementation with small
decay in the performance of the RDF(S) repository as compared to a system
without any kind of access control. Those are all the restriction types without
Query and without Security Classes involved;

• Extended. Restrictions that involve security classes. The performance decay
with respect to the standard requests to the repository is the same as for
restrictions on the Standard level. However, a system that supports security
classes should perform additional tasks under some strategy. Also, in a sense,
those restrictions are not as instant as those on the Standard level;

• Unrestricted. Restrictions of type Query. Those restrictions require a separate
query evaluation each time they have to be checked. They are definitely the
computationally heaviest restrictions causing unpredictable performance
decay. In the same time they allow virtually any type of business logic to be
encoded and enforced instantly.

The three-layer approach allows efficient management of the compromise between
performance and comprehensive security policy. It is expected that in a well-designed
security policy, most of the rules will be defined via Standard restrictions. Next,
many of the complex but not critical or dynamic rules will be defined via Extended
restrictions. Finally, most of the applications are expected to use just few or none
Unrestricted rules that actually incorporate the power and complexity typical for the

5 An RQL query (analogously to SQL) may return a table with multiple columns as a result set,
each row of which representing a single result. Only queries that return a table with single
column as a result set can define security classes.



-13-

application servers inside the repository. In case such rules are really necessary, the
performance the system depends on the complexity of the business logic and it should
be compared to what usually comes as two separate layers – application server on top
of a database or repository.

3.3. Implementation Approach

The implementation approach for the different aspects of the security enforcement is
discussed in [11]. Finally, the schema for the formal representation of the security
information is presented.

3.3.1. Efficiency Assumptions
The security model is carefully designed so to allow efficient implementation under
the following assumptions:
• The schema taxonomies (both classes and properties) can be kept in the memory;
• All the security information can be kept in memory. This should be possible at

least for the currently active users – those for which there are sessions opened.
For users that do not use sessions, because of some reasons (say, the protocol
used) a simple caching strategy should be possible;

• It is possible, without serious performance effect, to get the direct classes for the
resources. In a relational DB storage implementation this could be implemented
via separate table that takes care to store rdf:type statements or via special
index over the table(s) keeping the statements;

• It is possible, without serious performance effect, the owner of each statement
(i.e. the user, who added it) to be retrieved.

Under the above assumptions there exists efficient procedure (described in [11]) that
also supports streaming operations and requires two significant complications to the
work of the repository (i) retrieving of the classes for all the resources being retrieved
and (ii) checking sub-class and sub-property relations. Details about the
implementation approach for support of Security Classes and Query restrictions are
provided in [11].

3.3.2. Formal Representation of the Security Information
All the data necessary for the knowledge control system (KCS) can be formally
represented in RDF according to the schema
http://www.ontotext.com/otk/2002/03/kcs.rdfs. It is important to realize that KCS-
data might be kept natively in a different format due to efficiency or security reasons.
The important point is that such data logically follow this schema and can be
extracted in RDF(S) if necessary.



14

4. Conclusion and Future Work

The ontology middleware module presented still have to prove itself in real-world
applications. At this stage it is work in progress inspired by the methodology, tools,
and case studies developed under the On-To-Knowledge project. The reasoner of the
OntoMap (see, http://www.ontomap.org/) project will be wrapped as a SESAME
storage and inference layer – it will provide an interesting alternative between
RDF(S) and DAML+OIL, as well, as another justification for the capabilities of the
proposed design to “host” various inference services under single hat.

5. References

1. Boualem Benatallah, Zahir Tari. Dealing with Version Pertinence to Design an Efficient
Schema Evolution Framework.In: Proceedings of a "International Database Engineering
and Application Symposium (IDEAS'98)", pp.24-33, Cardiff, Wales, U.K. July 8-10 1998

2. W3C; Dan Brickley, R.V. Guha, eds. Resource Description Framework (RDF) Schemas.
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/

3. Jeen Broekstra, Arjohn Kampman. Query Language Definition. Deliverable 9, On-To-
Knowledge project, May 2001. http://www.ontoknowledge.org/downl/del9.pdf

4. Jeen Broekstra, Arjohn Kampman. Sesame: A generic Architecture for Storing and
Querying RDF and RDF Schema.Deliverable 10, On-To-Knowledge project, October
2001.
http://www.ontoknowledge.org/downl/del10.pdf

5. Ying Ding, Dieter Fensel, Michel Klein, Borys Omelayenko. Ontology management:
survey, requirements and directions. Deliverable 4, On-To-Knowledge project, June 2001.
http://www.ontoknowledge.org/downl/del4.pdf

6. Aseem Das, Wei Wu, Deborah L. McGuinness, and Adam Cheyer. Industrial Strength
Ontology Management for E-Business Applications. In the Proc. of International Semantic
Web Working Symposium (SWWS), July 30 - August 1, 2001, Stanford University,
California, USA.

7. Enrico Franconi, Fabio Grandi, Federica Mandreoli. Schema Evolution and Versioning: a
Logical and Computational Characterization. In "Database schema evolution and meta-
modeling" - Ninth International Workshop on Foundations of Models and Languages for
Data and Objects, Schloss Dagstuhl, Germany, September 18-21, 2000. LNCS No. 2065,
pp 85-99

8. Enrico Franconi, Fabio Grandi, Federica Mandreoli. A Semantic Approach for Schema
Evolution and Versioning of OODB. Proceedings of the 2000 International Workshop on
Description Logics (DL2000), Aachen, Germany, August 17 - August 19, 2000. pp 99-112

9. Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, V. S. Subrahmanian. Flexible
support for multiple access control policies. ACM Transactions on Database Systems
(TODS), Volume 26, June 2001, pp.214-260.

10. Patrick Hayes. RDF Model Theory. W3C Working Draft. http://www.w3.org/TR/rdf-mt/
11. Atanas Kiryakov, Kiril Iv. Simov, Damyan Ognyanov. Ontology Middleware: Analysis

and Design. Deliverable 38, On-To-Knowledge project, March 2002.
12. W3C; Ora Lassila, Ralph R. Swick, eds. Resource Description Framework (RDF) Model

and Syntax Specification. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
13. ORACLE Corp. “Oracle Label Security Administrator's Guide, Release 9.0.1” Part

Number A90149-01.
http://download-west.oracle.com/otndoc/oracle9i/901_doc/network.901/a90149/title.htm


