
Abstract

Collaboratories consisting of systems of information tools are
increasingly important as mediators of joint work in distributed
groups. These systems should be constructed in a testbed
development process. Such a process is far from trivial, and must be
continuously improved. To aid in this improvement process, a tool
context model is presented, in which the information system, work,
design, and improvement contexts of the information tools making
up a collaboratory can be represented. Using ontological, norm and
rule definitions, the links between various context processes can be
systematically defined and analyzed, promoting system integration.

1 Introduction

The Internet, having outgrown its infancy, connects ever more people. It gives them access to a
wide range of information tools that allow them to better retrieve and process information. Most
importantly, these tools much enhance the power to communicate. Professional communities
distributed in time and space now have great potential for improved collaboration, increasing the
efficacy of their work, such as the production of joint documents. However, for communities to work
together, more is needed than just providing their members with access to a set of tools and wait for
collaboration to emerge spontaneously. Instead, the focus should be on achieving strong collaboration,
in which a group synergistically develops and improves a structured artifact much more efficiently than
possible by the same group of people working independently [1]. To realize this synergy, these tools
should be examined as part of an integrated socio-technical system.

Collaboratories are one interesting type of information tool–based technical systems supporting
joint work in the research domain. A collaboratory consists of “various tools and technologies [...]
integrated to provide an environment that enables scientists to make more efficient use of resources
wherever they are located [2].” Although a few successful collaboratories are already operational, there
are no standard solutions for these very complex and volatile socio-technical systems. As the mission
statement of the Science of Collaboratories alliance states: “[T]he design, deployment, and adoption of
new collaboratories remain difficult and uncertain processes. Each collaboratory has been built as an
independent effort. Since these efforts involved complex responses to often idiosyncratic mixtures of
social and technical factors, general lessons about collaboratory design remain elusive1.”

The question now becomes: what design principles are needed? For these types of systems, an
iterative socio-technical design approach is required. Such an approach should acknowledge that there
are various contexts in which collaboration takes place in different ways by different scholarly
populations [3]. In this paper, we examine the parameters of such an approach, and outline how it could
be practically implemented in the PORT project.

2 The Testbed Development Process

Thirty years ago, Douglas Engelbart had a dream. In a “Knowledge Workshop ‘mission-oriented
communities’ explore applications by explicit progression, beginning with tested techniques, whose

1 http://www.scienceofcollaboratories.org/html/AboutSOC/Mission.html

Making Doug’s Dream Come True:

Collaboratories in Context

Aldo de Moor (ademoor@kub.nl)

Infolab, Dept. of Information Systems and Management,

Tilburg University, The Netherlands

‘cultural shock’ and financial investment are relatively low, and offering paced, open-ended evolution
with time, experience, and perceived payoff [4]”. In his view, the only feasible approach is a long-
term, pragmatically guided whole-system evolution. It is crucial not just to create good socio-technical
systems, consisting of co-evolving Human and Tool Systems. Also, one should continuously improve
this design process, in other words “improve the improvement capability of the organization”.
Engelbart therefore asks the very important question of whether there is a set of basic capabilities
whose improvement would significantly enhance both operational and self-improvement capabilities?
He then goes on describing his CODIAK (COncurrent Development, Integration and Application of
Knowledge) process, which aims to address this question [5].

 Engelbart’s insight is a fundamental conceptual step on the way to effective, or pragmatic testbed
development. Many collaboratory projects have focused on tool and infrastructure development, or at
most the development of tailored systems for particular activities and domains, like computer
simulation and healthcare [6]. However, so far only little systematic attention has been paid to the
context in which these systems are used and developed.

Building on and generalizing from Engelbart’s views on socio-technical systems design, we
distinguish a hierarchy of tool contexts, presented in our tool context model.

2.1 A Tool Context Model

• It is clear that information tools should be seen as interdependent parts of an integrated technical
system. For example, a mail is posted via a mailer to a mailing list and redistributed to the mailers
of the members of the list. These links between tools in terms of data interchange formats, trigger
events, shared resource prioritization schemes etc. we call their information system context.
Together, tools plus links form the information system.

• The second layer concerns the work context of the information system. The integrated technical
system does not operate in a vacuum, but is to serve the purpose of the community. In other words:
how does the information system support the goals and activities of the community? Thus, clear
definitions are needed of the workflows and organizational structures of the community, as well as
mappings between these definitions and the functionality of the various tools in the information
system. Together, information system and work context define the work system.

• Third, this socio-technical system needs to take into account the design context of the work and
supporting technological systems. At this level, the development processes of the socio-technical
system are modeled. The work system plus its design context together form the design system.

• The fourth layer concerns the improvement context of the design system: how do we ensure that
the design process itself is improved and optimized according to the pragmatic standards of the
community? Together, the design system plus improvement context form the improvement system.

2.2 Interfaces and Integration

The key units of analysis in each layer are processes. These we call information and communication
processes (information system context), workflows (work context), design processes (design context),
and improvement processes (improvement context).

In complex collaboratory development, distinguishing the various systems of users, tools,
processes, and their contexts is key. A system is a collection of parts that interact with one another to
function as a whole [7]. For each of the system processes, all interacting with parts of the same or other
systems, interfaces and integration aspects need to be defined.

An interface is the place at which independent and often unrelated systems meet and act on or
communicate with each other. Regarding process definition, we interpret the interface of a process to
be those of its constituting entities that are visible to system entities outside the process. The internal
workings of the process remain a black box to the outside world, however. In this way, the knowledge
essential for system development is shared, while retaining as many degrees of freedom as possible for
implementing or customizing the functionality of the individual tools. For instance, when defining the
archival workflow, core interface entities are the actors involved (e.g. authors, system manager), the
objects (e.g. archive directories, files), and functions (saving and indexing files).

One meaning of integration refers to blending into a unified whole2. We define integration as the
existence of any link between two process entities in any of the systems. For example, an archival
workflow may be linked to a design discussion process by separately storing and indexing any

2 http://www.merriam-webster.com

discussion thread about which tool to use for archiving purposes on the PORT web site. The more
system processes are linked, the higher the level of integration. In some cases, a high level of
integration may be desirable, although it comes at a cost of higher complexity. An example is the
linking of processes from different levels, such as connecting a workflow process to a design process,
so that the workflow definition can evolve. In other cases, loosely coupled processes may be more
useful. This could be the case with two workflow processes. One such process (e.g. an authoring
process) can feed into another (e.g. a review process), while the inner workings of the first process
only need to be a black box to the second process. Clearly, the abstract concept of ‘link' needs to be
further worked out. One interesting issue would be to develop a typology of links useful for
collaboratory evolution modelling.

2.3 A Conceptual Lens

The complexity of socio-technical system evolution for collaboratories is such that methodological
support is essential. Most methodologies, e.g. in knowledge and requirements engineering, focus on
modeling the lowest levels (information system, work context). Pragmatic approaches at the higher
meta-levels (design, improvement) that center on making efficient and effective community-controlled
systems evolution possible, hardly exist. Engelbart’s work is one of the few exceptions.

This paper introduced a (rudimentary) tool context model. It is not a methodology in itself, but
rather a meta-model that allows methodologies to be positioned and compared. The model is a
conceptual lens that allows one to focus on, literally, the missing links between IS models and
methodologies. Thus, it becomes possible to identify the strengths of and gaps in available socio-
technical methods for collaboratory development.

Using this contextual framework, testbed development methods for collaboratories can be
constructed and tested more systematically. Context elements can be changed at any particular layer,
while leaving other layers unchanged. This means that analyzing and comparing different approaches
becomes much easier. Such a meta-methodological approach is essential, since still so little is known
about what makes a collaboratory development process adequate: “Researchers themselves will build
this New World largely from the bottom up, by following their curiosity down the various paths of
investigation that the new tools have opened. It is unexplored territory. [6]” A contextual framework
can help chart this terra incognita, making the process of exploration safer and more fruitful.

In the next section, we describe and illustrate the PORT collaboratory and its contexts, and show
how the tool context model is well suited for meta-modeling the collaboratory development process.

3 PORT: A Contextual Collaboratory

The PORT (Peirce On-Line Resource Testbeds) project has two main foci: (1) developing a model
collaboratory for distributed scholarly Peirce manuscript analysis and (2) meta-modeling the testbed
development process, making use of Peirce’s pragmatism to help guide collaboratory participants in the
design process. Both objectives can and need to be developed simultaneously, but must also be clearly
delineated. The contextual framework may help in keeping both development processes and their
interactions in focus.

3.1 Tools

In PORT, various classes of tools can be distinguished.

• Generic tools: mailers, the PORT mailing list, the PORT web sites3

• Specialized work tools: Inote (a tool for collaboration that provides the capabilities to
locate and attach notes to areas on images), Transview (a tool that provides two different
views of the same material. This allows one to view the original of a document or image
and a transformation of it), CORE (the Collaboration Online Research Environment. This
is a tool that provides information management capabilities for collaborators)4

3 http://peirce.monmouth.edu/~bill/, http://www.darmstadt.gmd.de/~dirsch/port/

4 http://peirce.monmouth.edu/~bill/

• Knowledge representation tools: various CG and FCA tools.
• Design tools: RENISYS, AUGMENT etc.

These tools provide support for processes in different context layers. Generic tools, such as web
browsers, can be used in every layer, acting as gateways to all activities of the virtual community.
Specialized work tools are especially useful to support processes in the information system and work
context layer. RENISYS and Engelbart’s AUGMENT5 cover the higher layers. RENISYS supports
legitimate user-driven community information systems development, but so far has not been able to
self-improve its methodology. Incorporating the mentioned pragmatic inquiry approach is one step on
the way to a more adequate improvement context. AUGMENT provides many tailorable functionalities
that could play a role in systematically improving the socio-technical design process, although
improvement processes still seem to be quite implicit.

3.2 Processes

Instead of extensively describing the (continuously changing) PORT improvement system, we
illustrate the use of the framework by presenting key example processes and tools supporting these
processes, taken from existing web site or papers on PORT. In this way, we roughly indicate how the
various initiatives and project elements are related. Note that we do not describe the interface and
integration issues here. This framework, however, would provide a good basis for such a more detailed
analysis.

• Information/communication processes: text editing, mailing, file management, annotating.
• Workflows: image capturing, catalogue development, archival processes, report editing.
• Design processes: ad hoc discussions on PORT development (as conducted on the PORT mailing

list), structured conversations for specification (in the RENISYS method of legitimate user-driven
specification, selected users discuss requested changes to the socio-technical system. In a series of
well-defined conversational moves, they produce only acceptable changes to system knowledge
definitions [8]).

• Improvement processes: in [8], we propose to use a pragmatic inquiry process, using Peirce’s
abduction, deduction, and induction of hypotheses on effective systems development. This is a
good example of improving the development process, by making conversations for specification
more efficient over time.

Fig.1 An Application of the Tool Context Model

In Fig.1, we give a (simplified) example of an application of the context model. The problem here
is an improvement issue. Currently, a mailer is used to distribute mails via a mailing list, as part of the
review process. A modification process of this workflow has been defined, using a manual version of

5 http://www.bootstrap.org/augment/OAD/2221.html

Mailer Mailing
List

Distr.
Mail

Information System

Work SystemReview

Design SystemModify

Improvement SystemPragm.Inq

the RENISYS methodology. However, users have complained that they would like to test several
alternatives before making a final decision on which tool to use for the review process. To structure
this process, a simple pragmatic inquiry process is introduced, in which users always test two
alternatives.

4 Formally Modeling Tool Contexts

Given that there is such a variety of tools, serving complex processes in different contextual layers,
formal models can be of great help in organizing and reasoning about collaboratory development. Still,
it should be clear that formal context knowledge cannot, in general, be automatically generated.
Agreeing on those (continuously changing) knowledge definitions that best suit the particular
community to which they apply, requires hard human negotiation. However, once agreed upon, these
formal definitions can be useful, for instance, in selecting the right people to informally discuss a
particular design problem. In other words, the formal models are not particularly used to model the
various worlds in detail, but to structure the discourse about these worlds [9]
 For formalization purposes, conceptual graph theory is particularly useful, because it is well
suited for generalization/specialization operations and context modelling. These properties are
important for developing diverse views on, and links between collaboratory systems and contextual
entities.

To build formal models, three core knowledge categories are needed:

• Ontological (and State) Definitions

Ontologies can be used to make definitions of concept types, defining the type hierarchies and meaning
of concepts. Each contextual layer has its own ontologies. For example, part of a type hierarchy of the
work context layer could be:

Workflow >
Archive >
Archive_Images
Archive_Transcripts

Whereas part of the pragmatic inquiry process ontology of the improvement context is (see [8]):

Hypothesis >
Proposed_Hyp
Tested_Hyp >
Failed_Hyp
Succ_Hyp

Ontological concepts are the basis for relevant knowledge definitions, such as norms and states-of-
affairs (“state”) definitions. One example of a state definition that can be used to define links
(integration aspects) between entities from the system and work context is that of the support-relation
[10]:

[State: [Support:#145] –
(Poss) <- [User: #John]
(Inst) -> [Inote: #1]
(Obj) -> [Workflow_Mapping:#123]].

This definition explains that John uses the INote tool for supporting his workflow #123, which could be
a certain kind of review process-by-annotation.

• Norms

A norm is a principle of right action binding upon the members of a group, and serving to guide,
control, or regulate proper and acceptable behaviour. Norms can thus be used to direct processes at the
various context levels. A RENISYS composition norm at the design context level could be:

[Req_Comp: [Editor] <- (Agnt)-
[Eval] -> (Obj) -> [Specify] -> (Rslt) –

[Type: [Archive]]].

This norm states that the editor must evaluate (i.e. approve of) any change in the specification of the
archival process properties.

• Rules

Using the ontological (and state knowledge) and norms, the complete collaboratory improvement
system can be defined. In order to activate this declarative knowledge, CG tools that provide a
procedural instead of merely declarative knowledge support are needed. Examples are PROLOG+CG
(which allows PROLOG rules to reason about CG knowledge definitions) or tools that enable
conceptual graph actors to fire (like CharGer). Using rules, design and improvement events can be
automatically triggered, resulting in more adequate systems development processes. For example, if a
tool is introduced that enables a new type of communication processes (information system context), a
discussion at the design level could be automatically started, in which the support for the workflows
provided by the current tools is reconsidered. An outcome of this process might be to assign the new
tool as the software of choice for an existing workflow, such as the review process.

5 Conclusions

Collaboratories are composed of systems of information tools. In this paper, we stressed the importance
of systematically describing and analyzing the information system, work, design, and improvement
contexts of these tools, leading to better interfaces and integration. In this way, complex collaboratory
development processes can be made more systematic and pragmatic. Douglas Engelbart already
foresaw the importance of such a structured approach a long time ago, summarized by his motto of
“improving the improvement process”. With the maturation of Web-based information tools, and
sophisticated knowledge representation and reasoning formalisms like conceptual graph theory, the
time has come to make Doug’s dream come true.

5.1 References

1. Johnson, P. and C. Moore, Investigating Strong Collaboration with the Annotated Egret
Navigator. 1994, University of Hawaii.

2. Committee Toward a National Collaboratory: Establishing the User-Developer Partnership,
N.R.C., National Collaboratories: Applying Information Technology for Scientific Research.
1993, Computer Science and Telecommunications Board.

3. Sumner, T. and S.B. Shum. From Documents to Discourse: Shifting Conceptions of Scholarly
Publishing. in Proc. of CHI'98: Human Factors in Computing Systems, Los Angeles, 18-23
April 1998. 1998: ACM Press.

4. Engelbart, D.C. Coordinated Information Services for a Discipline- or Mission-Oriented
Community. in Proc. of the 2nd Annual Computer Communications Conference, San Jose,
California, January 24. 1973.

5. Engelbart, D.C., Toward High-Performance Organizations: a Strategic Role for Groupware.
1992, Bootstrap Institute.

6. National Research Council, Issues for Science and Engineering Researchers in the Digital
Age. 2001, National Academy of Sciences.

7. Maani, K.E. and R.Y. Cavana, Systems Thinking and Modelling: Understanding Change and
Complexity. 2000, Auckland: Pearson.

8. de Moor, A., M. Keeler, and G. Richmond. Towards a Pragmatic Web. in Proc. of the 10th
International Conference On Conceptual Structures (ICCS 2002), Borovets, Bulgaria, 15 - 19
July,. 2002.

9. Shum, S.B. and A.M. Selvin. Structuring Discourse for Collective Interpretation. in Proc. of
Distributed Collective Practices 2000: Conference on Collective Cognition and Memory
Practices, Paris, 19-20 September. 2000.

10. de Moor, A. and W.J. van den Heuvel. Making Virtual Communities Work: Matching their
Functionalities. in Proc. of the 9th International Conference on Conceptual Structures,
Stanford, July 30-August 3. 2001.

	Introduction
	The Testbed Development Process
	A Tool Context Model
	Interfaces and Integration
	A Conceptual Lens

	PORT: A Contextual Collaboratory
	Tools
	Processes

	Formally Modeling Tool Contexts
	Conclusions
	References

