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Goal of Computational Learning Theory Applied to
Natural Languages

Formal learnability results can give us insight into the
nature of natural language.
Learning language is a computational process.
The learnability of a class of languages depends on

1. the formal properties of its members, and
2. the data available to the learning algorithm.
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Negative results in PAC learning

Negative results in modern statistical learning theory come in
two types.

1 Information theoretic bounds on the amount of data
required (sample complexity):

Given an infinite hypothesis space, the
Vapnik-Chervonenkis (VC) dimension characterizes
whether something can be learned from bounded amounts
of data.

2 Complexity problems concerning the amount of
computation required to complete a learning task:

There may be enough information available, but it may not
be possible to process it efficiently.
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Finite Languages

Valiant (1984) introduced the PAC learning paradigm as a
distribution free model.
Nowak, Komarova and Niyogi (2002) point out that the
class of finite languages is not PAC learnable.
This result follows from the fact that the hypothesis space
for this class exhibits infinite VC dimension.
For any data sample from the vocabulary of a finite
language there will be a set in the class of finite languages
that includes it, and one that excludes it.
Therefore any data sample from the vocabulary of a finite
language will be shattered by the hypothesis space for this
class of languages.
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Regular Languages

The hypothesis space for the class of regular languages
also has infinite VC dimension.
A string from the vocabulary of any regular language will
be shattered by the hypothesis space of this class of
languages, which contains an infinite set of FSAs (FSGs).
Therefore the class of regular languages is also not PAC
learnable.
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Imposing an Upper Bound on the Size of the
Language

As Nowak et al. (2002) observe, by imposing an upper
bound k on the cardinality of the sets of finite languages in
HL, one achieves finite VC dimension for this hypothesis
space.
The VC-dimension of such an HL whose elements are
bounded in size is at most k .
In this case the class of languages in HL is PAC learnable.
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Imposing an Upper Bound on the Size of the Grammar

Similarly, the class of regular languages generated by
FSAs with an upper bound of k states (FSGs with not more
than k rules) is PAC learnable.
This result recalls Shinohara’s (1994) theorem stating that
length bounded EFSs can be inferred from positive
evidence for the class of context sensitive grammars, in the
Gold paradigm.
However, unlike Shinohara’s theorem, the PAC framework
requires that learning is tractable.
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Obtaining an Upper Bound on a Grammar

In many cases, we don’t need to specify the upper bound
as a condition on learning.
For example, for particular finite languages we can learn
without having a prior bound.
We could posit an upper bound on the size of possible
grammars as a learning prior.
Alternatively, it may be possible to estimate an upper
bound from learning samples, or we could have a gradually
increasing bound as a function of the amount of data we
have seen.
The size of the representation of a language is normally a
parameter for the sample complexity polynomial.
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Distribution Free Learning

An algorithm A PAC-learns a class of languages L if and only if,
there is a polynomial q, such that
(1) for every L ∈ L and
(2) every distribution D on the data samples, and
(3) ε, δ > 0,

whenever A sees a number of samples greater than
q(1/ε,1/δ),
(4) it returns a hypothesis H such that with probability greater

than 1− δ,
(5) the error of the hypothesis PD((H − L) ∪ (L− H)) < ε, and
(6) the algorithm runs in polynomial time.
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Modifying the Distribution Free Learning Assumption

The PAC learning model requires that if a class of
languages is learnable, then it is learnable for all
probability distributions on data samples from that class.
By modifying this assumption and restricting the set of
possible distributions available for PAC learning in a
specified hypothesis space H, it is possible to significantly
alter the class of PAC learnable languages.
This approach uses properties of the probability
distributions for a class of languages to facilitate learning of
that class, and this can solve computational complexity
problems.
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Specifying the Set of Distributions for a Class of
Languages

Clark and Thollard (2004) (C&T) characterize the set of
distributions D for a class of languages L through the
stochastic variant of the automata that generate the
elements of L.
For each L ∈ L, a distribution for L is the set of probability
values for the strings constructed from the vocabulary of L,
where the stochastic automata that generates L assigns a
probability greater than 0 to each string L.
If Σ∗ is the set of strings on the vocabulary Σ of L, then the
set of distributions for L is
DL = {D ∈ D : ∀s ∈ Σ∗(s ∈ L⇔ PD(s) > 0)}
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Constraining Distributions in PAC Learning

C&T define a set of probabilistic deterministic FSAs
(PDFAs), each of which generates a stochastic regular
language (a set of strings in a regular language to which
the PDFA assigns probability values).
A stochastic language L specifies a probability distribution
for the strings in L.
C&T show that if we restrict the set of possible distributions
for a PAC model to those generated by PDFAs, the class of
regular languages that these automata define is PAC
learnable, on the basis of positive evidence only .
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Characterizing PDFAs

A PDFA A is a tuple 〈Q,Σ,q0,qf , ζ, τ, γ〉 , where

Q is a finite set of states,
Σ is the alphabet (a finite set of symbols),
q0 ∈ Q is the single initial state,
qf 6∈ Q is the final state,
ζ 6∈ Σ is the final symbol,
τ : Q × Σ ∪ {ζ} → Q ∪ {qf} is the transition function, and
γ : Q × Σ ∪ {ζ} → [0,1] is the next symbol probability
function (γ(q, σ) = 0 when τ(q, σ) is not defined).

The probability of a string Pr(s) = γ(q0, sζ).
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Residual and Suffix Distributions

Residual distribution of a string s with γ(q0, s) > 0:

Prs(t) = γ(q0,stζ)
γ(q0,s)

Suffix distribution of the state q:

Prq(s) = γ(q, sζ)

µ-distinguishability:

for every pair of states u, v there is a string s such that
|Pru(s)− Prv (s)| > µ
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Residual and Suffix Distributions

The fact that PDFAs are deterministic and the
independence assumptions that they encode entail that for
any string s, there is a state qs such that τ(q0, s) = qs.
It follows that Prqs = Prs.
The key insight here is that the residual distribution of any
string is equal to the suffix distribution of some state.
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Distinguishing States in the Construction of a PDFA

The L∞(D) norm for a distribution D is the largest
probability value that D assigns to its arguments.
The L∞ norm between two distributions D1 and D2,
L∞(D1 − D2), is the maximal difference between the
probability values that each assigns to the same argument
(maxs |D1(s)− D2(s)|).
Pq(s) = γ(q, sζ).
Two states q,q′ are µ− distinguishable if
L∞(Pq − Pq′) > µ, where µ > 0.
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Distinguishing States in the Construction of a PDFA

The suffix distributions of two states are at least µ apart in
the L∞ norm.
We can make the empirical estimates of the suffix
distributions within µ′ = µ/4 of the true distribution.
We can test whether two strings s and t are in the same
state by checking the L∞ norm between the empirical
estimates of their residual distributions.
If the L∞-norm between two empirical distributions is less
than µ/2, then they correspond to the same state.
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LearnDFA: A State-Merging Algorithm for Learning
PDFAs

The algorithm LearnDFA incrementally constructs a DFA in
which each state has a multiset of strings, where this
multiset represents the suffix distribution.
Starting with the full multiset of strings in the language at
the initial state, LearnDFA progressively moves through
multisets of suffixes for the strings in this multiset by
comparing candidate nodes with nodes in the DFA, and
(1) adding a new state if the candidate has a different

distribution than the existing states of the DFA, or
(2) adding a new arc if it is identical to one of these states.
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A PAC Learnability Result for PDFA Generated
Regular Languages

C&T prove the following theorem.

Theorem 1 For any regular language L, when samples are generated
by PDFA A, where L(A) = L, with distinguishability µ and number of
states n, for any ε, δ > 0, the algorithm LearnDFA will, with probability
of at least 1− δ, return a DFA H which defines a language L(H) that
is a subset of L, with PA(L(A)− L(H)) < ε. LearnDFA will draw a
number of samples bounded by a polynomial in |Σ|, n, 1/µ, 1/δ. The
computation is bounded by a polynomial in the number of samples
and the total length of the strings in the sample.
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Probabilistic Context Free Grammars

A probabilistic context free grammar (PCFG)
G = 〈N,T ,S,P,S〉, where

N is the set of non-terminal symbols,
T is the set of terminal symbols,
S is the start symbol of G (corresponding to the root node
of a sentence),
P is the set of production (CFG) rules, and
D is a function assigning probabilites to the elements of P.
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PCFGs and Probability Distributions for Languages

For every non-terminal A ∈ N,
∑

A→α∈P D(A→ α) = 1.
For a derivation A⇒∗ α, the probability of the derivation is
the product of the probabilities for the rules applied in the
derivation.
The probability that a PCFG G determines for a string s is
the sum of the probabilities that G assigns to the
derivations of s.
The distribution PD that a PCFG specifies for a language L
is the probability values that PD assigns to the strings in L.
If G is consistent, then

∑
s∈T∗ PD(s) = 1.
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NTS Languages

A CFG is non-terminally distinct (NTS) iff for every A ∈ N, if
A⇒∗ αβγ and B ⇒∗ β, then A⇒∗ αBγ.
For any two non-terminals A,C in an NTS grammar, the
string sets derivable from A and C are disjoint.
This propery corresponds to the requirement that the
phrases of distinct syntactic categories in a natural
language do not overlap.
Clark (2006) shows that a subclass of CF languages,
generated by a restricted set of NTS PCFGs, is PAC
learnable from positive evidence only, given certain
conditions on the probability distributions for these
grammars.
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Additional Constraints on NTS Grammars:
Non-Ambigiuity

Clark (2006) specifies a subclass CNTS of NTS grammars
that satisfy three conditions.
The members of CNTS are unambiguous, where a grammar
G is unambiguous iff every string in the language that it
generates has only one (rightmost) derivation in G.
This constraint significantly reduces the set of NTS
grammars, and so of NTS languages.
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Additional Constraints on NTS Grammars:
Non-Ambigiuity

L = {an|n > 0} is an ambiguous NTS language (ie. when it
is taken as a language generated by an NTS grammar).
As this language contains the string aaa, its NTS grammar
must contain the rules S → a and S → SS.
These rules produce two distinct rightmost derivations for
aaa.

1. S ⇒ SS ⇒ Sa⇒ SSa⇒ Saa⇒ aaa
2. S ⇒ SS ⇒ SSS ⇒ SSa⇒ Saa⇒ aaa
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Additional Constraints on NTS Grammars:
Non-Redundancy and Non-Duplication

The members of CNTS contain no redundant non-terminals
(∀A ∈ N(∃u ∈ T ∗(A⇒∗ u) ∧ ∃l , r ∈ T ∗(S ⇒∗ lAr))).
The grammars in CNTS contain no duplicate non-terminals
(no non-terminals that generate the same strings).
Unlike the non-ambiguity condition, these two constraints
concern only the form of the grammar, but they do not alter
the class of NTS languages.
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Syntactic Congruence

Two strings u, v are syntactically congruent in L iff they
share all and only the same syntactic contexts in L
(u ≡L v iff ∀l , r ∈ L lur ⇔ lvr ).
Let Ct ⊆ T ∗X T ∗ be the set of pairs of left and right
contexts for strings in T ∗, and Ctu the set of contexts in
which the substring u occurs.
u, v are syntactically congruent in L iff their contexts are
identical for L (u ≡L v iff Ctu =L Ctv )
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Characterizing Syntactic Congruence Probabilistically

Let C : T ∗ X T ∗ → [0,1] be a function from context pairs to
probability values, Cu the context function for a substring u
in L, and PD a distribution for L.

CPD
u (l , r) =

PD(lur)∑
l,r PD(lur)

(the probability that PD assigns to

lur divided by the expected number of occurrences of u).
u, v are probabilistically congruent for a distribution D iff
their context functions are identical for PD
(u 'PD v iff CPD

u = CPD
v ).
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Three Parameters for Learning PCFGs:
µ1-Distinguishability

Clark (2006) posits three parameters whose values
determine lower bounds on properties of non-terminals to
insure their identification from data samples.
A PCFG is µ1 − distinguishable iff for every A ∈ N there is
a string u such that D(A⇒∗ u) > µ1.
This property sets a lower bound on the probability of
strings for each non-terminal in the grammar, and so
provides a confidence threshold for the distinguishability of
the members of N.
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Three Parameters for Learning PCFGs: ν-Separability

A PCFG is ν − separable for some ν > 0 if for every pair of
strings u, v in the set of substrings of L(G) such that
¬(u ≡ v), L∞(Cu − Cv ) ≥ νmin(L∞(Cu),L∞(Cv )).

This property specifies a minimal distance between the
context distributions of non-congruent strings.
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Three Parameters for Learning PCFGs:
µ2-Reachability

A PCFG is µ2-reachable if, for every non-terminal A ∈ N
there is a string u such that A⇒∗ u, and L∞(Cu) > µ2.
This property is equivalent to the requirement that for every
A ∈ N L∞(CA) > µ2.
It specifies a lower bound on the frequency of contexts for
non-terminals.
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The PACCFG Algorithm

Clark (2006) defines the PACCFG algorithm as follows.

Gather a finite sample.
Identify frequent substrings in the sample.
Test the substrings for probabilistic congruence, and
identify the probabilistic congruence classes.
Create a grammar by

adding non-terminals for each congruence class,
adding production rules [uv ]→ [u][v ] for congruence
classes of uv substrings,
adding production rules [a]→ a for congruence classes of
single symbol substrings a, and
identifying the initial S symbol with the congruence class of
strings in the language.
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PAC Learnability of NTS Languages

The PACCFG algorithm invokes values for the parameters
of µ1-distinguishability, ν-separability, and µ2-reachability
to identify the non-terminals of a PCFG from samples.

Clark (2006) shows that, with appropriate values for these
parameters, the class of unambiguous, non-redundant
NTS CFGs which do not contain duplicate non-terminals is
PAC learnable from positive data only.
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Negative Evidence in IIL and PAC Learning Paradigms

Both IIL and PAC learning paradigms assume that either
negative evidence in the form of membership labeling is
available for every data sample, or for none of them.
This assumption is unrealistic, as human learners receive
negative evidence only for a proper subset of the primary
linguistic data (PLD).
Moreover, this negative evidence does not generally take
the form of explicit labelling.
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Inferring Ungrammaticality from Low Frequency

Indirect negative evidence has been informally posited in
the linguistics and acquisition literature, but no attempt has
been made to formalize this concept of evidence in a
learning model.
Clark and Lappin (2009) (C&L) propose a way of doing this
that represents indirect negative evidence stochastically as
a two-part inference procedure.
The learner first infers the low probability of a string from
its low frequency in the data.
He/She then derives the ungrammaticality of a string from
its comparatively low probability.
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From Low Frequency to Low Probability

C&L assume each sentence in a presentation is generated
independently from the same probability distribution, where
this is the Independently and Identically Distributed
assumption (IID) common in statistical analysis.
The IID is an idealizing assumption that abstracts away
from the obvious probability dependencies among
sentences that are conditioned by semantic, dialogue,
discourse, and other factors.
The hope is that over very large amounts of data the IID
converges on an approximation of the facts.
The inference from the low frequency of a string in a data
set to its low probability in the distribution for the language
follows from the IID.
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From Low Probability to Ungrammaticality

Grammaticality does not reduce to a high probability value
for a string.
Some grammatical strings in a language have vanishingly
rare frequency, and so they have low probability
We also cannot identify ungrammaticality with 0 probability,
as some ungrammatical strings do occur in the PLD.
We need to specify a suitable lower bound on probability to
distinguish grammatical from ungrammatical strings.
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A Lower Probability Bound for Grammatical Strings

Given that the learner learns from unlabelled data, there
must be a function from the set of distributions for a
language D(L) to that language.
This condition entails the Disjoint Distribution Assumption
(DDA):
If L 6= L′ then D(L) ∩ D(L′) = ∅.
If g is a function that maps a string into a lower bound
probability value for grammaticality, relative to a
distribution, then we can specify the restricted set of
possible distributions for a language as
D(L,g) = {D : pD(s) > gD(s)⇔ s ∈ L}.

Alexander Clark and Shalom Lappin Restricting Probability Distributions



Distribution-Based PAC Learning of Regular Languages
Distribution-Based PAC Learning for a Subclass of CF Languages

Modeling Indirect Negative Evidence Probabilistically
Conclusions

A Lower Probability Bound for Grammatical Strings

Given that the learner learns from unlabelled data, there
must be a function from the set of distributions for a
language D(L) to that language.
This condition entails the Disjoint Distribution Assumption
(DDA):
If L 6= L′ then D(L) ∩ D(L′) = ∅.
If g is a function that maps a string into a lower bound
probability value for grammaticality, relative to a
distribution, then we can specify the restricted set of
possible distributions for a language as
D(L,g) = {D : pD(s) > gD(s)⇔ s ∈ L}.

Alexander Clark and Shalom Lappin Restricting Probability Distributions



Distribution-Based PAC Learning of Regular Languages
Distribution-Based PAC Learning for a Subclass of CF Languages

Modeling Indirect Negative Evidence Probabilistically
Conclusions

A Lower Probability Bound for Grammatical Strings

Given that the learner learns from unlabelled data, there
must be a function from the set of distributions for a
language D(L) to that language.
This condition entails the Disjoint Distribution Assumption
(DDA):
If L 6= L′ then D(L) ∩ D(L′) = ∅.
If g is a function that maps a string into a lower bound
probability value for grammaticality, relative to a
distribution, then we can specify the restricted set of
possible distributions for a language as
D(L,g) = {D : pD(s) > gD(s)⇔ s ∈ L}.

Alexander Clark and Shalom Lappin Restricting Probability Distributions



Distribution-Based PAC Learning of Regular Languages
Distribution-Based PAC Learning for a Subclass of CF Languages

Modeling Indirect Negative Evidence Probabilistically
Conclusions

Specifying the Threshold Function

Defining the restricted set of possible distributions in terms
of the lower bound function g satisfies DDA.
To have content this definition must be supplemented with
a characterization of g.
It is useful to specify g in a way that renders it dependent
on properties of its distribution.
One way of doing this is to make it sensitive to the
conditional probabilities of a class-based n-gram language
model of the kind described, for example, in Pereira (2000).
When g depends on properties of D, the learner will need
to estimate these properties in order to determine g.
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Revising PAC Learning with Indirect Evidence

Given g it is possible to model indirect negative evidence
through membership queries on large samples of data.
The learner can test a number of strings polynomial in the
sample for grammaticality by computing the probability of
each string s from its frequency, and then comparing its
probability to the threshold value g(s).
C&L revise the definition of PAC learning so that an
algorithm effectively learns L not for every distribution
D ∈ D, but for every distribution D ∈ D(L,g).
In this revised PAC learning paradigm the data set is not
labelled, and the set of possible distributions on the data is
restricted by a function giving a lower probability bound for
membership in the language.
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Conclusions

C&T show that if distributions are restricted to those
determined by PDFAs, then the class of regular languages
that these automata generate are PAC learnable from
positive data only.
Clark (2006) extends this approach to NTS languages
generated by PCFGS, to demonstrate PAC learnability
from positive data only for an interesting subclass of CF
languages.
C&L propose a stochastic model for indirect negative
evidence, and they integrate it into PAC learning.
This work indicates that by modifying the distribution free
assumption of PAC learning, the class of effectively
learnable languages can be significantly expanded.
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